University Microcredential for Supervised Learning in ML + 2 ECTS Credits

Educational Institution
Mode Online
Duration 50 horas
Credits 2 ECTS
Languages Spanish
59
Pago en cuotas sin intereses Acceso para siempre para consultar tu curso

Request information

Reconocidos por
Acreditados porRating Educahub

Syllabus

Curriculum

Summary

Supervised Learning in ML is your gateway to a field in constant expansion and increasing labor demand. In a world where data is the new gold, knowing how to manage it and extract value from it is essential. You will learn from the fundamentals of supervised learning, through data preparation and feature engineering, to advanced models such as Support Vector Machines and assembly techniques such as Random Forest and Gradient Boosting. You will acquire skills to evaluate and optimize models, from linear regression to complex ensemble systems. This training gives you the necessary tools to become an expert in creating intelligent and effective solutions, all in a flexible and online way.

Goals

- Comprender el contexto y aplicación del aprendizaje supervisado frente a otros paradigmas. - Diferenciar entre problemas de clasificación y regresión en aprendizaje supervisado. - Evaluar modelos de aprendizaje supervisado usando métricas clave y validación cruzada. - Aplicar técnicas de limpieza y codificación de datos para mejorar su calidad. - Implementar técnicas de selección y extracción de características relevantes. - Construir modelos básicos como regresión lineal y árboles de decisión efectivamente. - Optimizar modelos avanzados y de ensamblado mediante ajuste de hiperparámetros.

Professional opportunities

Aprendizaje Supervisado en ML ofrece multitud de salidas laborales, entre las que se encuentran ingeniero/a de machine learning en empresas tecnológicas, analista de datos especializado/a en modelos predictivos, científico/a de datos para optimización de procesos industriales, o consultor/a en inteligencia artificial para el sector financiero.

To prepare you

La formación Aprendizaje Supervisado en ML te prepara para abordar problemas complejos de clasificación y regresión mediante el uso de técnicas avanzadas y modelos de ensemble. Aprenderás a limpiar y preparar datos, seleccionando características relevantes y aplicando técnicas de reducción de dimensionalidad como PCA. Podrás implementar modelos desde regresión lineal hasta técnicas avanzadas como SVM y Random Forest, optimizando su rendimiento.

Who is it addressed to?

La formación Aprendizaje Supervisado en ML está dirigido a profesionales y titulados/as del sector tecnológico y científico que desean profundizar en los fundamentos del aprendizaje supervisado, incluyendo la preparación de datos y feature engineering, así como explorar modelos básicos y avanzados como SVM y Random Forest, todo con un enfoque práctico y accesible.

Methodology

Our methodology combines technology, pedagogy and empathy for learning tailored to you.

You set the pace, decide the path and artificial intelligence accompanies you so that you learn better, with meaning and purpose.

Truly personalized learning

Your style, interests and level define the route. You are the starting point.

Constructivism in action

Explore, experiment and apply. Learning means understanding, not memorizing.

AI that accompanies you, not directs you

PHIA, our artificial intelligence assistant guides you without limiting your autonomy.

Evaluation without pressure

Continuous and adaptive feedback. Because learning is a process, not a number.

Certification

Logo certificado-1
Logo certificado-2

Titulación de Microcredencial Universitaria de Aprendizaje Supervisado en ML con 50 horas y 2 ECTS expedida por UTAMED - Universidad Tecnológica Atlántico Mediterráneo

Logo certificado-1

Scholarships

EducaHub Scholarships

Make your training more accessible: finance at 0% interest and obtain personalized scholarships.

At EducaHub we believe that education should be available to everyone. For this reason, we offer a Scholarship Plan that facilitates your access to practical, current and quality training, eliminating economic barriers.

-25%

Alumni Scholarship: for former EducaHub students.

-20%

Unemployment Scholarship: if you prove that you are unemployed.

-20%

Large Family Scholarship: for families with 3 or more children.

-20%

Disability Scholarship: for people with disabilities ≥33%.

-15%

Emprende Scholarship: for self-employed workers who can prove their activity.

-15%

Recommended Scholarship: if you come recommended by a former student.

-15%

Group Scholarship: for joint registrations of 3 or more people.

An entire educational universe, on a single platform.

An intuitive environment with AI that guides you to train autonomously and with purpose.

Learn more

Learn at your pace

Courses, master's degrees and official qualifications. 100% online, flexible and at your pace.

Access from anywhere

Available 24/7 on mobile, tablet or PC. You decide when and how to train.

Phia, your AI mentor

It challenges you, motivates you and personalizes your path. Learn with a guide that evolves with you.

LX One Plus: Training without limits

Unlock soft skills, languages ​​and more. Move towards comprehensive and continuous training.